- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Junge, Karen (2)
-
Carpenter, Shelly (1)
-
Chaw, Matthew (1)
-
Courville, Zoe (1)
-
Dhakar, Kusum (1)
-
Farley, Samuel M. (1)
-
Firth, Erin (1)
-
Frantz, Carie M. (1)
-
Gentilhomme, Anais S (1)
-
Lieblappen, Ross (1)
-
Light, Bonnie (1)
-
Nunn, Brook L (1)
-
Orellana, Mónica V. (1)
-
Timmins-Schiffman, Emma (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Since the discovery of perchlorates in martian soils, astrobiologists have been curious if and how life could survive in these low-water, high-salt environments. Perchlorates induce chaotropic and oxidative stress but can also confer increased cold tolerance in some extremophiles. Though bacterial survival has been demonstrated at subzero temperatures and in perchlorate solution, proteomic analysis of cells growing in an environment like martian regolith brines-perchlorate with subzero temperatures-has yet to be demonstrated. By defining biosignatures of survival and growth in perchlorate-amended media at subzero conditions, we move closer to understanding the mechanisms that underlie the feasibility of life on Mars. Colwellia psychrerythraea str. 34H (Cp34H), a marine psychrophile, was exposed to perchlorate ions in the form of a diluted Phoenix Mars Lander Wet Chemistry Laboratory solution at -1°C and -5°C. At both temperatures in perchlorate-amended media, Cp34H grew at reduced rates. Mass spectrometry-based proteomics analyses revealed that proteins responsible for mitigating effects of oxidative and chaotropic stress increased, while cellular transport proteins decreased. Cumulative protein signatures suggested modifications to cell-cell or cell-surface adhesion properties. These physical and biochemical traits could serve as putative identifiable biosignatures for life detection in martian environments.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Frantz, Carie M.; Light, Bonnie; Farley, Samuel M.; Carpenter, Shelly; Lieblappen, Ross; Courville, Zoe; Orellana, Mónica V.; Junge, Karen (, The Cryosphere)Abstract. Field investigations of the properties of heavily melted “rotten” Arcticsea ice were carried out on shorefast and drifting ice off the coast ofUtqiaġvik (formerly Barrow), Alaska, during the melt season. While noformal criteria exist to qualify when ice becomes rotten, the objectiveof this study was to sample melting ice at the point at which its structural andoptical properties are sufficiently advanced beyond the peak of the summerseason. Baseline data on the physical (temperature, salinity, density,microstructure) and optical (light scattering) properties of shorefast icewere recorded in May and June 2015. In July of both 2015 and 2017, smallboats were used to access drifting rotten ice within ∼32 km of Utqiaġvik. Measurements showed that pore space increased as icetemperature increased (−8 to 0 ∘C), ice salinitydecreased (10 to 0 ppt), and bulk density decreased (0.9 to0.6 g cm−3). Changes in pore space were characterized with thin-sectionmicrophotography and X-ray micro-computed tomography in the laboratory. Theseanalyses yielded changes in average brine inclusion number density (whichdecreased from 32 to 0.01 mm−3), mean pore size (whichincreased from 80 µm to 3 mm), and total porosity (increased from0 % to > 45 %) and structural anisotropy (variable, withvalues of generally less than 0.7). Additionally, light-scattering coefficientsof the ice increased from approximately 0.06 to > 0.35 cm−1 as the ice melt progressed. Together, these findings indicate thatthe properties of Arctic sea ice at the end of melt season are significantlydistinct from those of often-studied summertime ice. If such rotten ice wereto become more prevalent in a warmer Arctic with longer melt seasons, thiscould have implications for the exchange of fluid and heat at the oceansurface.more » « less
An official website of the United States government
